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We study the thermally activated barrier crossing by long chain molecules, initially confined to one side of
an entropic trap. The entropic barrier is assumed to be of Kramers type. The barrier width is considered to be
larger than the chain. The latter is in turn assumed to be long enough, so that a continuum description of the
chain is applicable throughout the space. The barrier crossing rate is calculated using multidimensional Kram-
ers theory and the functional integral method. For chains having the same total number of segments, the
activation energy itself remains constant. However, the preexponential factor depends on the structure of the
polymer. Polymers with the same molecular weight but having longer arms can effect larger fluctuations,
thereby increasing its chance to cross the barrier. This leads to an almost exponential increase of the rate
prefactor with the radius of gyration. The difference in the barrier crossing rates could be effectively exploited
for the separation of molecules having architectural differences, for example, DNA of same length but different
degrees of supercoiling. This is illustrated by considering star polymers. The Rouse-Ham model is used to
analyze the mechanism of the barrier crossing. We show how the rate expression of the Arrhenius type is
affected by the long arms of the star chain.
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I. INTRODUCTION

Electrophoresis and gel permeation chromatography �1�
are standard methods of separation of polymers and DNA by
length. These processes exploit size dependent differences in
the time it takes for the molecules to migrate through a ran-
dom porous network. Small molecules are thought to adopt
an approximately spherical conformation �2� while larger
molecules are forced to snake through �3–5� the gel media.
Molecules of intermediate size can get temporarily trapped
in the pores, where the molecule can extend and thus maxi-
mize its conformational entropy. The molecules migrate by
diffusing from one pore to another and thus pass through
regions where they cannot sample all the conformations.
Hence each time the molecules go from one pore to another
they have to overcome an entropic barrier. An interesting
recent study �6� reports the effect of entropic trapping on the
diffusion rate for molecules of different sizes.

As the length of the chains becomes longer, the efficiency
of the separation process deteriorates seriously. Recently a
well defined nanofluidic channel device, consisting of many
entropic traps, was introduced �7� to overcome this limita-
tion. The device, see Fig. 1, consists of narrow constrictions
and wider regions that cause size-dependent trapping of
DNA at the constrictions. The process creates mobility dif-
ferences, thus enabling efficient separation of long DNA
molecules �5000 to 160 000 base pairs�. In a Brownian dy-
namics simulation, Streek et al. �8� reproduced the experi-
mental condition �7� of the nanofluidic device and found that
the mobility increases with the length of the chain. They also
find that smaller molecules have a higher probability to re-
main trapped in regions of low electric field. Tessier et al. �9�
performed computer simulation studies of the device where
the driving force is a varying �ac� field in the zero frequency
limit. They find that a time-asymmetric pulse can yield bidi-
rectional transport for different molecular sizes. At finite fre-
quency they uncover a resonance for the molecular velocity

in the channel which could lead to improved performance.
In all these studies a polymer undergoes an activated bar-

rier crossing at a submicron sized constriction. Similar tech-
niques can be used for long chain molecules with different
architectures. The architectural difference involves consider-
able differences in their dynamics. For example, plasmid
DNA is made up of two covalently closed circular strands
which are normally found in compact supercoiled form �10�.
Isolation steps, like nicking by nucleases, chemical treat-
ment, or mechanical shear, can introduce breaks in the
strands which allow the DNA to relax and form an open
circular form �10� or other forms with lesser degree of su-
percoiling �11�. Separation of these forms often needs special
techniques �12,13�. However, a detailed study of these di-
verse kind of polymers diffusing through a gel or an array of
entropic traps is still lacking.

The focus of this paper lies in solving the thermally acti-
vated escape of a flexible polymer over a barrier. With the
chain being viewed as a coupled array of Brownian particles,
each subjected to the space fixed potential, the problem is a
generalization of the well known Kramers theory to many
degrees of freedom �14�. We consider a chain with simple
harmonic coupling between neighboring segments and as-
sume the entropic barrier of the Kramers type �15�; see Sec.
II for details. The model will be appropriate for a situation
where the barrier curvature is small on microscopic scales so
that the extension of individual segments remains small
throughout the dynamics of the chain. The barrier width is

FIG. 1. A cross section of the nanofluidic device with entropic
barriers.
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considered large enough so that the escape process is domi-
nated by the activation of the entire polymer over the barrier.
These conditions can be easily reproduced in the experi-
ments; the barrier parameters are related with different ex-
perimental situations. In this case, the activation energy is
proportional to the total number of monomers in the chain.
Using multidimensional Kramers theory �16–18� an analyti-
cal expression of the barrier crossing rate is obtained.

To illustrate the role of the architectural differences we
consider multiarm star polymer as a model system. The star
configuration �19,20� is interesting because it gives rise to
motional modes extending over different arms of the macro-
molecule. Further, the multiplicity of arms also leads to de-
generacy of the modes. These modes have a significant effect
on the rates of barrier crossing. The aim in this paper is to
present these results of the escape process.

Throughout the work use is made of the multiarm star
polymer. This is no limitation, if one is concerned with a
barrier crossing process which is dominated by the activation
of the entire polymer over the barrier. The conclusions are
general and applicable to macromolecules of any architec-
ture. On the other hand, if one is interested in the activated
barrier crossing process where the width of the barrier is
small compared to the size of the macromolecule �21�, one
has to consider the contribution of all paths leading to the
other side of the barrier. This, at present, seems rather in-
volved. However, we believe that the star polymers capture
the essential physics of the problem.

II. THE MODEL

A. The free energy landscape

Consider a flexible polymer chain. We start by assuming
the free energy landscape for the crossing of the barrier. Con-
sider the chain is affected by a space-fixed potential along
the x axis, see Fig. 2,

U�x� = −
�B

2

2
x2 +

�B
2

4�2x4. �1�

The potential has two minima at x= ±� separated by a barrier
centered at x=0. The barrier has a height of UB=U�0�
−U�±��=�B

2�2 /4 and a width of 2�. The curvature of the
potential at the maximum is �B

2 and at the minima it is �0
2

=2�B
2 . Initially, the chain is trapped in one of the minima

�cis� where its free energy per segment is U�−��=−�B
2�2 /4.

It can undergo free motion along y and z-axes. So the initial
state of the polymer has a free energy F�−��=−�B

2�2NT /4,
where NT is the total number of segments; see Fig. 3. In the
nanofluidic device experiments �7� this can be identified with
the DNA in the portion inside the thick region of the channel.
Here the polymer can form spherical equilibrium shapes, be-
cause the channel thickness is larger than the radius of gyra-
tion. In crossing over to the trans side, the long chain mol-
ecule pass through a region in space where the free energy
per segment is higher, thus effectively presenting a barrier
for the motion of the molecule. This corresponds to the thin
region where the spherical equilibrium shape cannot be sus-
tained. The molecule gets squeezed in the thin region and the
equilibrium structure is deformed. This conformation change
costs entropic free energy.

The free energy change in such a situation can be ana-
lyzed by the method of scaling �22�. Consider a capillary �or
a slit� of diameter �or thickness� D�R, where R� lNT

� is the
chain size �l is the Kuhn length; �=3/5�. On length scales
less than D, a chain located in the capillary �or slit� is insen-
sitive to the imposed constraint. The maximum length of the
unperturbed section of the chain is �D / l�1/�. This section of
polymer segments is called a blob. For the estimation of the
free energy change, �F, associated with the capillary �slit�,
note that kBT �kB is Boltzmann constant and T the tempera-
ture� is the only quantity in the problem having the dimen-
sion of energy. The polymer is characterized by the only
length scale lNT

�, so the quantity D can enter all expressions
only in the combination D / �lNT

��. The free energy �F takes
the form

�F � T��D/lNT
�� , �2�

where ��x� is so far an unknown function of the dimension-
less argument x=D / �lNT

��. The form of the function ��x� is
difficult to derive explicitly, but its asymptotic behavior for
the strongly compressed chain �x�1� can be established eas-
ily. Because of the thermodynamic additivity condition, a
macromolecule placed in a narrow slit breaks into many in-
dependent parts or blobs. Therefore, �F�NT. Hence, ��x�
��x�−1/�, and

FIG. 2. The potential energy per segment of the chain, plotted as
a function of the position.

FIG. 3. The free energy landscape for the barrier crossing pro-
cess. Note that the star chain is smaller than the width of the po-
tential. The star is assumed to be initially trapped in the potential
well at x=−�.
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�F � TNT�D/l�−1/�. �3�

The free energy per blob is approximately equal to kBT. This
helps to relate the parameters of the potential given by Eq.
�1�. When a segment is in the barrier region the change in its
potential is U�±��−U�0�=�B

2�2 /4. Hence we can now relate
the parameters in the model potential with the parameters of
the barrier in the experimental situations: �B

2�2 /4
�T�D / l�−1/�.

B. The polymer: A star chain

Consider an f-arm star chain with the 	th arm composed
of N	 segments. The segments are numbered from the center
of the star, n	=0, to the free end of the arm, n	=N	; see Fig.
4. The total number of beads in the star chain is NT i.e.,
�	N	=NT. When there is no potential acting, the star chain
exhibits diffusive motion. We first look into this case. Let
r	�n	 , t� be the spatial position of the n	-th segment at time t
in three dimensions �3D�. The motion of the polymer seg-
ments in all the three directions is the same. Hence, it is
sufficient to model the chain along any of the axes; we
choose to do so along x direction. The dynamics of the star
chain can be easily modeled if the molecule is treated as a
collection of long chains which are connected at one end but
the other end is free. In this case, the continuous form of
Rouse-Ham equation �19,20� can be used for modeling the
star,



�x	�n	,t�

�t
= �

�2x	�n	,t�
�n	

2 + F�n	,t�, 	 = 1, . . . , f . �4�

Here, 
 is the segmental friction coefficient of the Rouse
segments, ��=3kBT / l2� accounts for the increase in free en-
ergy on stretching the chain and F is a random force, char-
acterized by moments �F�n	 , t�	=0 and �F�n	 , t�F�n	� , t��	
=2
kBT��n	−n	����t− t��. The boundary conditions are

�x	�n	,t�
�n	

= 0 at n	 = N	, 	 = 1, . . . , f �5�

at the free end and

�
	=1

f 
 �x	�n	�
�n	



n	=0

= 0, �6�

x = x� at n = n� = 0 for ,� = 1, . . . , f �7�

at the center of the star chain.
The eigenfunctions for x	�n	 , t� satisfying Eqs. �4� and �7�

are classified into two groups: S	,k and C	,p, having and not
having a node at the connected end �n	=0�, respectively.
Using these functions we can expand x	�n	 , t� as

�x	�n	,t�� = X0�t��1� + �
p

Xp�t��C	,p�n	��

+ �
k

�Y	,2k−1�t�S	,2k−1�n	�� , �8�

C	,p =
cos �p�N	 − n	�

cos �pN	

, S	,2k−1 = sin2k − 1

2N	

�n	� . �9�

Here �¯� means an array of f quantities �with 	=1, . . . , f�; X
and Y are the amplitude vectors of eigenfunctions C	,p and
S	,k, respectively. �p is the eigenvalue for C	,p determined by

�
	=1

f

tan �pN	 = 0, p = 1,2, . . . . �10�

The boundary condition, Eq. �6�, implies that the functions
S	,k �and hence Y	,2k−1� are not completely independent of
each other. Thus we need to specify independent eigenfunc-
tions according to the two cases described below, so that the
expansion given in Eq. �8� is a well defined expansion.

Case 1: If j��2� integers k	1
,k	2

, . . . ,k	j
satisfying

2k	1
− 1

N	1

=
2k	2

− 1

N	2

= ¯ =
2k	j

− 1

N	j

=
2k* − 1

N* �11�

exists, the 	1 ,	2 , . . . ,	 jth arms, have the degenerate eigen-
functions S	j,2k	 j

−1=sin��2k*−1��n	 /2N*� with the same ei-

genvalue �2k*−1�� /2N*, and the amplitude factors should
satisfy

�
i=1

j

Y	i,2k	i
−1 = 0. �12�

For this case we have j−1 independent eigenfunctions.
Case 2: If no integers k satisfy

2k	 − 1

N	

=
2k − 1

N

,  = 1, . . . ,	 − 1,	 + 1, . . . , f �13�

for a given integer k	 �for the 	th arm�, S	,2k	−1 is not a
proper eigenfunction, and Y	,2k	−1=0.

For the chain at equilibrium at t=0, the average time evo-
lution of Y	,2k	−1 belonging to the case 1 is characterized by
the second moment

FIG. 4. Schematic illustration of an f-arm star chain. The arm
segments are numbered from the center of the star to the end of the
chain.
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�Y	,2k	−1�t�Y,2k−1�0�	 = �Y	,2k	−1Y,2k−1	eq

�exp�−
��2t



2k� − 1

2N�
�2� ,

�14�

where �¯	eq denotes the average at equilibrium. The second
moment of Xp is similarly characterized as

�Xp�t�Xq�0�	 = �XpXq	eq exp−
��p

2t



� . �15�

The averages at equilibrium are evaluated by

�ZZ�	 =

�
−�

�

�dZ��ZZ����Z���

�
−�

�

�dZ�����Z���
, �16�

where Z, Z�, and Z� indicate amplitude vectors X and Y, and
the equilibrium distribution function � for these vectors is
given by

� � exp�−
�

2kT
�
	=1

f �
0

N	  �x	

�n	
�2

dn	� . �17�

III. THE RATE CALCULATION

A. Multidimensional Kramers’ rate theory

We are interested in finding out what is the rate or the
inverse mean time of the thermally activated crossing of the
whole chain from one well to the other. To simplify the prob-
lem, we confine ourselves to the overdamped case where the
crossing dynamics is much slower than the internal chain
relaxation. In this case a multidimensional Kramers’ theory
�16� is directly applicable. For the interaction between the
beads only the nearest neighbor coupling characterized by
the potential V��r�=V(�r�n+1�−r�n��) is considered. We ne-
glect other interbead interactions that give rise to the ex-
cluded volume effect and bending stiffness. In dilute solu-
tions, the Rouse-Ham model �20,24�, which is a simple bead
spring model, gives a satisfactory description of the confor-
mation and dynamics of a real polymer. Strictly speaking, the
segmental “spring” of a real polymer in presence of a rapidly
varying potential is no longer linear, as assumed in Rouse-
Ham model. However, if the barrier height is less than kBT
per segment �23�, i.e., �B

2�2�kBT, the nonlinear terms in
V��r� may be safely neglected.

The total energy of the chain in presence of the potential
U is

��r	�n	�� = �
n	

U�r	�n	�� + �
n	

3kBT

2l2 �r	�n	 + 1� − r	�n	��2.

�18�

The summation is over all polymer segments of the star
chain. The focus is on the overdamped limit where the bead’s
momentum relaxation has already occurred. In this limit, the

escape process can be regarded as a Brownian motion occur-
ring in the 3N-dimensional configuration space of the chain,
where the above energy function, Eq. �18�, is defined. Noting
that the energy function does not involve coupling between
different Cartesian coordinates, the problem can be further
reduced by considering the dynamics only along the x direc-
tion. Note that the potential is varying only along this axis,
along other axes the potential is invariant; see Fig. 2. The
polymer dynamics is then governed by the energy function

��x	�n	�� = �
n	

U�x	�n	�� + �
n	

3kBT

2l2 �x	�n	 + 1� − x	�n	��2.

�19�

The probability per unit volume of the chain to have con-
figuration x	�n	� at time t , P�x	�n	� , t� satisfies the Fokker-
Planck equation

�P

�t
= D�

m

�

�xm
� �

�xm
+ �

�

�xm
��P . �20�

The summation is over all segments of the star chain. Here,
D is the segmental diffusion coefficient and �= �kBT�−1. In y
and z directions the star chain simply shows the free space
Rouse-Ham �19,20� chain dynamics.

The configuration space of the star polymer �x	�n	�� con-
tains two stable points that correspond to the chains localized
at x= +� or x=−�. These two states, which will be denoted
by �x̄�+ and �x̄�−, respectively, are separated by a higher-
energy region, or barrier, in the �x	�n	�� space. The problem
is to find the rate at which the star chain starts from its initial
confinement around �x̄�− and escapes over the barrier to
reach the well around �x̄�+. The activation energy of this
process is the lowest threshold energy in all the paths con-
necting the states �x̄�− and �x̄�+. Geometrically, it is deter-
mined by the path crossing the saddle point �x̄�B in the con-
figuration space, which is a stationary point with respect to a
variation satisfying


 ��

�x	�n	�



�x̄�B

= 0 �21�

and involving only one unstable mode along which the “re-
action flux” runs from �x̄�− to �x̄�+. This “transition state”
�x̄�B corresponds to either a localized configuration �23� of
�x	�n	�� around x=0, or a kink configuration �21� represent-
ing a stretched chain around x=0, depending on the star
chain and the potential parameters.

We denote the activation energy as ��=���x̄�B�
−���x̄�−�. If ���kBT, the crossing time is greater than any
internal chain relaxation time, and it can be calculated from
an approximate, quasi-stationary solution to Eq. �20�. The
rate is obtained by dividing the reaction flux j across the
saddle point �x̄�B by the total probability population confined
in the well at �x̄�−. The resulting rate R is
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R =
�B

2�


ZB

Z0

�2�kBTe−���, �22�

where Z0 and ZB are the partition functions associated with
the fluctuation of the system near the initial stable point �x̄�−

and the saddle point �x̄�B, respectively,

Z0 = �
well

dN�x�n	��e−�����x	��−���x̄�−��, �23�

ZB = �
barrier

dN−1�x�n	��e−�����x	��−���x̄�B��. �24�

The integration in ZB is over the hypersurface which contains
the saddle point but is normal to the unstable mode.

The above rate formalism can be applied to our problem if
we identify a well defined transition state of the chain repre-
sented by a localized saddle point in the configuration space.
This can be seen by noting that Eq. �22� gives the rate in
terms of only the local properties of the saddle and the meta-
stable points, without showing dependence on the details of
the activation processes. One example of such dependence is
when the chain contour length is much larger than the width
of the barrier so that the chain translocation from one well to
the other occurs via movement of a stretched portion of the
chain, or a kink along the chain �14�.

B. The star chain in double well

Consider the space fixed quartic potential U�x� �see Fig.
2�, where the barrier width is larger than the length of each
of the arms of the chain. In this potential the variational
relationship equation �21� has three solutions consistent with
the chain boundary conditions,

�x̄	�n	�� � 0, ± � . �25�

Among these, the solutions corresponding to the chains con-
fined in either well, �x̄	�n	��� ±�, are stable. Assume that
the chain is initially confined in the left well near x=−�, so
that the metastable configuration is denoted by x̄0= �x̄�−

�−�. The subscript 0 indicates that this is the configuration
at time t=0. The homogeneous configuration x̄	�n	��0 is
the only saddle point �in the �x̄	�n	�� space� bridging the two
stable states �x̄	�n	��� ±�. We denote such a transition state
as �x̄�B.

To assess the effects of the fluctuation and the saddle
point structure of the chain energy functional we investigate
the eigenvalue spectrum of the operator of the second order
expansion of � at the stationary points. This operator is de-
fined by the expansion

��x̄ + �x� = ��x̄� +
1

2
� dn �x�n���x�n� + O���x�4� ,

�26�

where the integration is over all chain segments �25�. The
differential operator corresponds to

� ⇔ U���x̄	�n	��� − �
d2

dn2 . �27�

The operator −��d2 /dn2� has nondegenerate eigenfunctions
C	,p with the eigenvalue spectrum ��p

2, where p=0,1 , . . . and
	=1,2 , . . . , f , see Eq. �9�. These are associated with the
Rouse modes not having a node at the connected end n	=0.
The eigenvalues associated with the Rouse modes having a
node at the connected end can be found by the two cases
discussed in the last section. For case 1 the operator
−��d2 /dn2� have j−1 degenerate eigenfunctions S	j,2k	j−1

=sin��2k*−1��n	 /2N*� with the same eigenvalue ��2k*

−1�2�2 /4N*2 for j integers satisfying Eq. �11�. For case 2
there are no proper eigenfunctions having a node at the con-
nected end. Note that the total number of eigenmodes is
equal to the total number of Rouse segments in the star
chain.

The curvature of the potential at the minima is U��−��
=2�B

2 =�0
2. The eigenvalues of � for the chain in the meta-

stable well �x̄�− are obtained by shifting the eigenvalues for
the star chain in free space by �0

2. Thus the eigenvalues are
�p

0 =�0
2+��p

2, where p=0,1 , . . . and �k*
0 =�0

2+��2k*

−1�2�2 /4N*2 for all integers satisfying Eq. �11�. Note that
for �x̄�− all eigenvalues are positive, confirming that these are
solutions of Eq. �21� corresponding to stable configurations.

Consider the saddle point �x̄�B�0. The curvature of the
potential at the maximum is U��0�=−�B

2 . The eigenvalues of
� for this state are obtained by shifting the eigenvalues for
the free star chain by −�B

2 . They are �p
B=−�B

2 +��p
2, where

p=0,1 , . . . and �k*
B =−�B

2 +��2k*−1�2�2 /4N*2 for all integers
satisfying Eq. �11�. In this state the smallest eigenvalue is
−�B

2 , which is negative. The next eigenvalue, associated with
the first Rouse mode C	,1 and/or S	,1 is positive as long as
�B

2 ���1
2 and/or �B

2 ���2 /N	
2 , for all N	. Thus, as long as

the conditions �B
2 ���1

2 and/or �B
2 ���2 /N	

2 are satisfied,
the state �x̄�B�0 is indeed the saddle point with only one
unstable eigenmode C	,0�1. This constitutes the transition
state of the chain bridging the two stable configurations. As
the configuration �x̄�B�0 corresponds to a compact chain
conformation at the barrier top and the single unstable mode
C	,0 represents uniform translation in the x direction of the
whole chain, we conclude that the star chain crosses the bar-
rier in a compact form.

In this compact-state barrier crossing regime, let us calcu-
late the rate R. The net barrier height �� is the difference
between the energies of the two stationary states �x̄�B and
�x̄�−:

�� = ���x̄�B� − ���x̄�−� = �
	

N	UB = NTUB. �28�

The partition functions accounting for the free energies of
fluctuation at the well and the saddle state are calculated
from the functional integrations

Z0 = �
well

D��x�n��e−����x̄0+�x�−��x̄0��, �29�
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ZB = �
saddle

D��x�n��e−����x̄B+�x�−��x̄B��. �30�

The integration ZB is over all modes except the unstable
mode which leads to the barrier crossing. For integrating
over fluctuation �x�n� we express the fluctuations of the
chains at the extrema in terms of the eigenfunctions C	,p and
S	,k of the operator �:

�x�n� = �
	,p

X	,pC	,p + �
	,k

Y	,2k−1S	,2k−1. �31�

Substituting this in Eqs. �29� and �30� and performing the
integrations within the harmonic approximation for the varia-
tion in � leads to the partition functions

Z0 = ��2�kBT�NT��0
0 . . . �−1/2���k*

0 � j−1 . . . �−1/2, �32�

ZB = ��2�kBT�NT −1��1
B . . . �−1/2���k*

B � j−1 . . . �−1/2. �33�

Finally, from Eq. �22� we obtain

R =
�B

2�


��0
0 . . . �1/2

��1
B . . . �1/2

���k*
0 � j−1 . . . �1/2

���k*
B � j−1 . . . �1/2

e−�NTUB �34�

=
�B�0

2�
 � �
p��0�

��0
2 + ��p

2�1/2

�− �B
2 + ��p

2�1/2�
���

k*

��0
2 + ��2k* − 1�2�2/4N*2��j−1�/2

�− �B
2 + ��2k* − 1�2�2/4N*2��j−1�/2�e−�NTUB �35�

for −�B
2 +��p

2 �0 and −�B
2 +��2k*−1�2�2 /4N*2�0.

Equation �35� has several hidden features which demands
attention. When there are arms of equal length the Rouse
modes of these arms not having a node at the center are the
same. They are no longer independent. However, these arms
also give rise to modes having a node at the center, which are
degenerate. Thus, whenever there are modes with a node at
the center of the star chain there is also a linear dependence
of modes not having a node at the center. These issues are
illustrated in Secs. III C and III D.

As the flexibility of the chains decreases or when the
polymer is in a poor solvent, the polymer behaves like a
compact globule. In this strong coupling limit l→0 �or �
→�� the rate becomes that for a single particle in the double
well

R�l → 0� →
�B�0

2�

e−�NTUB � R0. �36�

R0 is the rate expected when the star chain acts like a single
compact globule. As the chain becomes larger the rate in-
creases. For all range of parameters satisfying the conditions
−�B

2 +��p
2 �0 and −�B

2 +��2k*−1�2�2 /4N*2�0, the activa-
tion energy itself remains constant. The effect of flexibility is
wholly contained in the prefactor of the rate, Eq. �35�, rep-
resenting the effect of the fluctuations of star in the well and
on top of the barrier. For a fixed �, the rate R compared to
its strong coupling limit, increases on increasing the length
of any of the arms of the star chain by a factor of

R
R0

= � �
p��0�

��0
2 + ��p

2�1/2

�− �B
2 + ��p

2�1/2�
���

k*

„�0
2 + ��2k* − 1�2�2/4N*2

…

�j−1�/2

„− �B
2 + ��2k* − 1�2�2/4N*2

…

�j−1�/2� . �37�

Equation �37� also shows that for a given total molecular
weight of a polymer the rate prefactor can differ widely de-
pending upon the architecture of the polymer.

In all the above analysis the parameter range considered is
−�B

2 +��p
2 �0 and −�B

2 +��2k*−1�2�2 /4N*2�0. When −�B
2

+��p
2→0 and/or −�B

2 +��2k*−1�2�2 /4N*2→0 the rate R
diverges. This happens when the eigenvalue of the internal
Rouse modes of the star polymer at the top of the barrier
matches with the curvature of the external potential. The
polymer undergoes a coil-to-stretch transition �26�. As the
motional modes of the polymer extend over different arms of
the molecule and the multiplicity of arms leads to the degen-
eracy of the modes, there emerges multiple pathways for the
barrier crossing. Each singularity in the rate expression
points to an opening of a pathway to lower the free energy
which effectively increases the rate of the barrier crossing.
However, when the barrier curvature is small on the micro-
scopic scale and the barrier width is large compared to the
size of the polymer, the escape process is dominated by the
activation of the entire chain over the barrier.

For a general arm-length distribution, it is difficult to
solve Eq. �10� analytically and find an explicit expression for
�p. It is also difficult to find appropriate k values satisfying
Eq. �11� and giving nonzero Y	,2k−1 factors. We thus analyze
the dynamics of model f-arm stars with simple structures:
star chains with all arms having equal lengths and star chains
with a distribution of arms having lengths N and 2N. Using
these results we find the barrier crossing rates for the star
chains. For a star chain, other than the two classes, the dif-
ficulty in solving Eq. �10� analytically in closed form leaves
us only the method of numerically finding the rates of barrier
crossing. However, the method is clearly outlined in Sec.
III A and Eqs. �32�–�35�.

C. Star chain with equal arms

Consider an f-arm star chain composed of arms of equal
lengths N1=N2= ¯ =Nf =N. When there is no external po-
tential acting on the chain the star polymer exhibits diffusive
dynamics. The position vector of the chain segments can
then be expanded in terms of modes as shown in Eq. �8�. For
the eigenmodes not having a node at the connected end, C	,p,
the eigenvalue equation �10� is simplified to

tan �pN = 0, �p = p�/N, p = 1,2, . . . �38�

so that C	,p=cos�p�n	 /N�. Note that C	,p are nondegenerate
eigenfunctions. The eigenmodes having a node at the con-
nected end S	,2k−1=sin(��2k−1� /2N��n	) are degenerate for
the arms, leading to the relation
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�
k=1

f

Y	,2k−1 = 0 for k = 1,2, . . . . �39�

We have f −1 independent �20� eigenfunctions S	,2k−1.
Consider the star is effected by the space fixed quartic

potential in Eq. �1�. The width of the barrier is assumed to be
larger than the length of each arm of the star chain as shown
in Fig. 3. For the chain trapped in the metastable well �x̄�−

the eigenvalue spectrum of the operator �, defined by Eq.
�27�, is �0

2+��2p2 /N2 and �0
2+��2k−1�2�2 /4N2, with p

=0,1 , . . . and k=1,2 , . . ., respectively. For the chain at the
saddle point �x̄�B the eigenvalue spectrum of � is −�B

2

+��2p2 /N2 and −�B
2 +��2k−1�2�2 /4N2 with the same p and

k, respectively, as in the potential well.
The net barrier height �� is the difference between the

energies of the two stationary states �x̄�B and �x̄�−:

�� = ���x̄�B� − ���x̄�−� = fNUB = NTUB. �40�

The partition functions Z0 and ZB accounting for the free
energies of fluctuations at the well and the saddle state, re-
spectively, are calculated from the functional integrals �29�
and �30�. The integrations over fluctuations �x�n� can be
done by expressing the fluctuations of the chains in terms of
the eigenfunctions C	,p and S	,2k−1 of the operator �. On
performing the integrations within the harmonic approxima-
tion for the variations in �, the partition functions are

Z0 = ��2�kBT� fN��
p

��0
2 + ��2p2/N2�1/2�

���
k

„�0
2 + ��2k − 1�2�2/4N2

…

�f−1�/2� , �41�

ZB = ��2�kBT� fN−1��
p

�− �B
2 + ��2p2/N2�1/2�

���
k

„− �B
2 + ��2k − 1�2�2/4N2

…

�f−1�/2� . �42�

Substituting these partition functions into Eq. �22�, we obtain

R =
�B�0

2�
 ��
p

��0
2 + ��2p2/N2�1/2

�− �B
2 + ��2p2/N2�1/2�

���
k

„�0
2 + ��2k − 1�2�2/4N2

…

„f−1�/2

�− �B
2 + ��2k − 1�2�2/4N2

…

�f−1�/2�e−�fNUB,

�43�

�
�B�0

2�

�B

2

�0
2�1/4 sinh�N��0

2/��

sin�N��B
2/��

�1/2

� cosh�N��0
2/��

cos�N��B
2/��

��f−1�/2

e−�NTUB. �44�

The last approximation holds for all N�1.
The rate can also be expressed in terms of the radius of

gyration. For an f-arm star polymer of equal arm lengths the
radius of gyration is �27�

rg
2 = Nl21

2
−

1

3f
� . �45�

Using this in Eq. �44�,

R �
�B�0

2�

�B

2

�0
2�1/4 sinh�z0�

sin�zB� �
1/2 cosh�z0�

cos�zB� �
�f−1�/2

e−�NTUB

�46�

=
�B�0

2�

�B

2

�0
2�1/4 ez0 − e−z0

2 sin�zB� �
1/2 ez0 + e−z0

2 cos�zB��
�f−1�/2

e−�NTUB,

�47�

where z0= (rg
2��0

2 /� / l2� 1
2 −1/3f�) and zB= (rg

2��B
2 /� / l2� 1

2
−1/3f�).

As the flexibility of the star arms decreases the strong
coupling limit is reached. In this limit the barrier crossing
rate is given by Eq. �36�.

D. Star chain with bimodal arm length distribution

We consider an ensemble of long and short linear chains
of lengths 2N and N, respectively. Using these as precursors,
one can make f-arm star chains with a distribution of short
and long arms. In the following star chains composed of 
short and f − long arms is considered. For this polymer the
eigenvalue equation for C	,p reduces to

 tan �pN + �f − �tan 2�pN = 0 �48�

which in turn leads to three sequences of eigenvalues �20�,

�p = p�/N, �p� = �p − 1 + ���/N and �49�

�p� = �p − ���/N, p = 1,2, . . .

with

� = �1/��cos−1 �/2f �0 � � � 1/2� . �50�

For the eigenmodes S	,2k−1 note that the integers satisfying
Eq. �11� are found only for arms of the same length, N or 2N.

The eigenvalues of the operator � for the star chain inside
the metastable well �x̄�− thus leads to five sequences. The
eigenvalues due to the modes not having a node at the con-
nected end are �0

2+��2p2 /N2, �0
2+��2�p−1+��2 /N2 and

�0
2+��2�p−��2 /N2, with, p=1,2 , . . .. The eigenvalues due

to the modes having a node at the connected end are �0
2

+��2k−1�2�2 /4N2, with k=1,2 , . . . and �0
2+��2k�

−1�2�2 /16N2, with k�=1,2 , . . .. Similarly, for the chain at
the saddle point �x̄�B, the operator � has five sequences of
eigenvalues. The eigenvalues due to the modes not having a
node at the connected end are −�B

2 +��2p2 /N2, −�B
2

+��2�p−1+��2 /N2 and −�B
2 +��2�p−��2 /N2, with p

=1,2 , . . .. The eigenvalues due to the modes having a node at
the connected end are −�B

2 +��2k−1�2�2 /4N2, with k
=1,2 , . . . and −�B

2 +��2k�−1�2�2 /16N2, with k�=1,2 , . . ..
Substituting these eigenvalues into Eq. �34� we obtain rate of
barrier crossing
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R =
�B�0

2�
 ��
p

�0
2 +

��2

N2 p2�1/2

− �B
2 +

��2

N2 p2�1/2

�

�0
2 +

��2

N2 �p − 1 + ��2�1/2

− �B
2 +

��2

N2 �p − 1 + ��2�1/2

�

�0
2 +

��2

N2 �p − ��2�1/2

− �B
2 +

��2

N2 �p − ��2�1/2�
���

k

�0
2 +

��2

4N2 �2k − 1�2��−1�/2

− �B
2 +

��2

4N2 �2k − 1�2��−1�/2�
���

k�

�0
2 +

��2

16N2 �2k� − 1�2��f−−1�/2

− �B
2 +

��2

16N2 �2k� − 1�2��f−−1�/2�e−�NTUB.

�51�

When N�1 the rate can be approximated to

R �
�B�0

2�

�B

2

�0
2�1/4 sinh�N��0

2/��

sin�N��B
2/��

�1/2

� cos�2��� − cosh�2N��0
2/��

cos�2��� − cos�2N��B
2/��

�1/2

� cosh�N��0
2/��

cos�N��B
2/��

��−1�/2

� cosh�2N��0
2/��

cos�2N��B
2/��

��f−−1�/2

e−�NTUB. �52�

In the strong coupling limit the barrier crossing rate for the
star with bimodal arm distribution is again given by Eq. �36�.

E. The rate: Near exponential dependence
on radius of gyration

Quantitatively, the rate of the thermally activated process
equations �34�–�37�, �43�, �44�, �51�, and �52� derived by
multidimensional-Kramers theory are in the form of the cel-
ebrated Arrhenius law:

R = �0e−Ea/KBT, �53�

where Ea is the activation energy and �0 the preexponential
factor, which can be thought of as �but not identified with;

see above� a frequency characteristic of the system. Once the
two parameters Ea and �0 are deduced all the details of the
system can be predicted within the broad validity regime of
Kramers theory.

Of the two parameters determining the rate of the barrier
crossing, Ea and �0, the activation energy is unquestionably
the more important one because it enters Eq. �53� exponen-
tially. In the barrier crossing problem by a star chain the
activation energy is proportional to the total number of seg-
ments in the star chain. This exponential dependence of the
barrier crossing rate for stars having different structures is
illustrated in Fig. 5.

Less attention is generally paid to the pre-exponential fac-
tor �0, primarily because it enters the same equation only
linearly. The justification for this uneven balance of attention
comes from a vast amount of accumulated data for a wide
variety of material systems. However, for the present system
the rate prefactor has a significant role in the barrier crossing
mechanism. The prefactor holds the collective dynamics of
the star chain and can differ widely depending upon the ar-
chitecture of the stars. Star chains having the same number
of total Rouse segments NT, can have varied structures. For
example, a star having six arms each consisting of ten seg-
ments and a star having three arms, each having 20 seg-
ments, have the same total number of segments NT=60.
However they have different radius of gyration rg �27�. The
longer arms give rise to extended motional modes. The star
moves at random within the well until a large fluctuation
propels it out of the well over the energy barrier. Molecules
with larger radius of gyration can effect larger fluctuations,
thereby increasing its frequency to escape over the barrier. In
Tables I and II we list different star polymers while keeping
the total number of Rouse segments constant. These molecu-
lar structures have a range of radius of gyration. Here again
we see that the stars with a larger radius of gyration have
higher crossing rates. The effect of the radius of gyration on
the rate prefactors is clearly seen in Fig. 6. This plot shows
that the rate prefactor depends almost exponentially upon the

FIG. 5. Plots of the logarithm �with base 10� of the rate of
barrier crossing against the total number of segments in the star
chain. The stars are considered to have arms of equal lengths. The
barrier parameters chosen for the calculation are �B /�=1/1200 and
�=126.5l.
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radius of gyration. However, it is difficult to see this from the
analytical expressions, even in the simplest case where all
the arms of the chain are of equal length; see Eq. �47�.

In experimental situations the exponential dependence of
the rate on the radius of gyration can have significant impli-
cations. In purification of DNA, the starting material nor-
mally contains mixtures of DNA which can have open circu-
lar forms or supercoiled structures with varied degrees of
writhe and twists �28�. These structures exhibit considerable
difference in their dynamics. In the entropic based methods
�7� of separation of the DNA, the differences in the dynamics
of different structures of the same molecule can be effec-
tively utilized. The separation methods are already an order

of magnitude faster than the conventional slab gel pulsed-
field gel electrophoresis, with the possibility to achieve better
resolution through longer channels. The exponential depen-
dence of the rate on the radius of gyration can thus be used to
separate DNA having different kinds of secondary structures.

The rate expressions could also lead to design and fabri-
cation of new separation materials such as hydrogels �6�, in
which macromolecules could be retarded, trapped and sepa-
rated. Such materials might also be used as specific bio-
chemical trapping materials for applications in drug delivery
and controlled release processes. These may also be used as
semi-homogeneous microreactors for applications in organic,
bioengineering and combinatorial synthesis. In these applica-

TABLE I. Comparison of the molecular architectures, radius of gyrations, and reduced barrier crossing
rates for multiarm star chains, keeping the total number of segments constant NT=60.

No. of arms
�f�

No. of short
arms
��

No. of long
arms

�f −�

Length of arms/
short arms

�N�

Reduced mean square
radius of gyration

�rg
2 /NTl2�

Reduced rate
�R /R0�

3 20 0.778 1.739

4 15 0.625 1.567

5 12 0.520 1.455

6 10 0.444 1.379

10 6 0.280 1.223

3 2 1 15 0.812 1.777

3 1 2 12 0.808 1.773

4 3 1 12 0.664 1.607

4 2 2 10 0.666 1.610

5 4 1 10 0.555 1.491

6 2 4 6 0.472 1.406

7 2 5 5 0.409 1.345

7 4 6 6 0.424 1.358

TABLE II. Comparison of the molecular architectures, radius of gyrations, and reduced barrier crossing
rates for star chains with NT=72.

No. of arms
�f�

No. of short
arms
��

No. of long
arms

�f −�

Length of arms/
short arms

�N�

Reduced mean square
radius of gyration

�rg
2 /NTl2�

Reduced rate
�R /R0�

3 24 0.778 2.203

4 18 0.625 1.902

6 12 0.444 1.588

8 9 0.344 1.431

9 8 0.309 1.379

12 6 0.236 1.277

3 2 1 18 0.812 2.275

4 2 2 12 0.667 1.977

5 4 1 12 0.556 1.772

5 2 3 9 0.554 1.772

5 1 4 8 0.539 1.746

6 4 2 9 0.484 1.651

6 3 3 8 0.481 1.647
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tions, the existence and location of chemical species could be
probed by flourescent markers to monitor physiochemical
processes in real time.

Finally, we should make a comment on the domain of
applicability of the above analysis. The study uses Rouse-
Ham model to derive the rate of escape over the barrier. This
model accounts for the local interactions along the chain. It
neglects hydrodynamic interactions and excluded volume ef-
fects which are significant in several systems. Hence the
study is applicable to star polymer solutions and other sys-
tems where Rouse-Ham model is known to work well. An-
other domain where the analysis does not hold is when the
arms of the star have a contour length much longer than the
width of the barrier. In such a situation the barrier crossing
occurs via movement of a stretched portion of the chain over
the barrier. This process significantly reduces the activation
energy and hence increases the rate �14�.

IV. CONCLUDING REMARKS

We considered the generalization of the Kramers escape
over a barrier problem, to the case of a long chain molecule
with a given structure. The escape process consists of the
motion of the chain molecule across a region where the free
energy per segment is higher, so that it has to cross a barrier.
We consider the limit where the width of the barrier is larger
compared to the length of each of the arms of the macromol-
ecule. The latter in turn is considered to be long enough so
that a continuum description of the chain is applicable. To
illustrate the effect of the structure of the macromolecule on
the escape process a star polymer is used. The Rouse-Ham
model is used to calculate exactly the rate of the barrier
crossing using multidimensional Kramers theory. The activa-
tion energy is found to be linearly dependent on the total
number of segments in the star chain. However the preexpo-
nential factor depends upon the architecture of the macro-
molecule. The prefactor is found to increase exponentially
with the radius of gyration. The study significantly enhances
the understanding of interesting and relevant features of ther-
mally activated processes of soft, complex systems. This
could lead to the development of electrophoretic methods for
separation of macromolecules of different architectures. It
could also help in synthesis of novel materials for controlled
drug release for use in therapeutics and novel microreactors.
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